
Chapter 1: Introduction

This chapter will introduce you to some basic concepts and should make you
familiar with your programming environment. The goal of this chapter is
to set everything up so that you will be ready to start working on Baby-
Bayes from the next chapter on. Thus, here I will provide you with some
background information and recommendations before you actually start pro-
gramming.

Section 1.1: Getting Started with Writing a Software

Subsection 1.1.1: The academic software lifecycle

Writing a software in academia is slightly different from writing a commer-
cial software. Academic software is more experimental and the algorithms
and designs used are often not clear from the start. This makes it inher-
ently difficult to design and plan well from the beginning. Furthermore, the
algorithms needed might be entirely new or only new to the developer, so
expertise might be limited. There is a reason why we call it research.

Software engineers have developed different paradigms of developing a soft-
ware, which include, amongst others, the Waterfall model, iterative develop-
ment and prototyping. My own impression is the many biologists are afraid
that a software needs to be planed exactly from the beginning, as would be
done in the waterfall model. From my own experience this is rarely the case
and often does not lead to a successful software. The major problem is that
we do not know now what algorithm will work, which data and models we
will use in 5 or 10 years from now. A good software should be reusable also
for the future, but it is impossible to plan ahead precisely.

You should do your best to have an outline for the software that you want
to write; which tasks it will perform; which methods, data structures and
algorithms are needed. A lot of computational biologists that I know write
first a prototype in a programming language that will produce a result quickly,
for example in R or python, and afterwards implement an efficient and clean
version in c or c++. Writing a prototype can also be useful if you work on
single feature that will be added later to a larger software. The additional

1

https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Software_prototyping

advantage of prototypes are that they can be used to test and validate your
implementation; it’s simply unlikely that you made the same implementation
mistake twice, although mistakes in the model can not be caught. In the
end, software development in academia is rather an iterative process with
continuous additions and refinement over the years to come. Don’t be afraid
of not foreseeing the potential use cases of your software, just try not to
program yourself into a corner.

Our software RevBayes originated because we could not extend MrBayes to
the new types of models and data structures needed (mostly models for time
trees). MrBayes was simply not flexible enough to accommodate the huge
variety of phylogenetic models although it is still one of the most important
software in evolutionary biology and marks a cornerstone in this research
area. In the present book we have the slightly artificial situation that I
already know exactly how the software BabyBayes is going look like: I have
the unusual advantage of having written a very similar software before.

The incremental nature of academic software is reflected in the versioning
process (although the same can be said for commercial software). You will
often find that the third position of a version is updated for bug fixes (from
version 1.2.0 to 1.2.1), the second position is updated when additional fea-
tures are available (going from version 1.2.1 to 1.3.0), and the first position is
only changed for major, often structural changes of the software. Note that
these are only guidelines some people follow and other do not.

What I find important is that the version and updates can be followed using
a version control system. A version control system, such as git, helps you
to backup your code, create new release versions, and work on your code
together with collaborators. I will talk more about git repositories below.

Subsection 1.1.2: Choosing a programming language

Choosing the right programming language for a specific task is not as easy as
it sounds. You will notice this predicament when you ask different computer
scientists or computational biologist: they will give you different answers on
what they think is the best programming language for your problem. There
are several programming languages around that can be recommended, for
example, c++, Java, python, perl and R. All of these have their advantages

2

and disadvantages. In most situations, you should or will pick the one that
(a) is familiar to you, and (b) most people in your research community are
using. Only if there are good reasons for not sticking with a programming
language that you already know, then you should learn another programming
language. Furthermore, once you know a few programming languages it will
be easy for you to learn a new one. Basically all programming languages
follow a similar set of rules and structures.

There are a few ways how to classify programming languages. Some pro-
gramming languages, such as R, python and pearl, are interpreted. That
means, another software, the interpreter, interacts with you and translates
your commands to actually perform some tasks. This interpretation or trans-
lation happens in real-time. Each command is interpreted after the previous
one and you can interact with the computer program, for example, to query
to value of a variable.

Other programming languages, such as c, c++ and Java, are compiled pro-
gramming languages. That means, that your source code will be translated
by the compiler into machine code. Each CPU (the Central Processing Unit
in your computer) works with a vendor (e.g., Intel or AMD) specific machine
code language which is called the assembly programming language. The com-
piler translates code written in your higher level programming language into
assembly code. On your computer you will find most software in assembly
code. If you would open the software in a text editor you would not be able
to read and understand the code. So you are lucky that today you do not
need to write the commands in assembly anymore. Common programming
language are high level languages and are translated into machine readable
code using the the compiler. The important piece for you is that you need to
learn how to use the compiler (more below) and this short paragraph tried
to explain you why.

There are other classifications of programming languages. For example, Java
and c++ are object oriented programming languages whereas other program-
ming languages are functional programming languages. The specific details
are beyond the scope of this introductory book.

My own classification between these programming languages is: - c: Was
used extensively before but should be replaced by c++ for larger software
projects because of the object oriented programming design. - c++: One
of the fastest and most powerful programming language. The big problem

3

with the powerfulness is the complexity which is a burden for novice pro-
grammers. - Java: Similar to c++ but much more restrictive which helps
novice programmers to learn fundamental programming design principles
such a objected oriented programming. - python: An increasingly popular
programming language because of its easy-of-use but not as efficient as c and
c++. - perl: Similar to python but with more complexity. In perl, there
are thousands of ways to do the same task whereas in python there often is
only one way. Having fewer choices can make the code easier to read because
most developers will follow the same programming style. - R: Very useful
and powerful for statistical analysis and plotting, but not design for larger
and complex types of analysis.

In this book we will use c++ as the programming language of choice. This is
clearly not because I think that c++ is the perfect programming language
to start learning programming. Rather, my choice is made out of necessity
that we developed MrBayes and RevBayes in c++. I hope that the extra
complexity of c++ will not be a burden for this book.

Subsection 1.1.3: Setting up a code repository

Version control systems have a long history in software development. Early
methods include CVS and SVN and today git is very popular. The general
idea is that there is some general repository for your source code. On your
computer, you have a local copy of the files in the repository. When you
make any changes to these files, you should commit these changes to the
global repository so that they become available to all your collaborators.

It is a very good habit to use repositories for all your projects. I even do this
for projects that I haven’t shared with anyone. The primary reasons are that
(a) the code is securely stored in the cloud and cannot be deleted by accident,
(b) I can always find the most recent version of the project files, and (c) I
can trace back the history of my files, for example, if I need to revert back
to an earlier version.

Today, a lot of open source software projects are hosted on GitHub. As an
academic, you can get a free account which even includes private repositories.
So you can create a repository for your code in this class without making it
public. I recommend that you create such a repository now. You can name

4

https://github.com/

it whatever you want, but it is recommendable to give it a name which you
associate with this work. During one of our workshops, a student suggested
we can have a special version of RevBayes call SeBayes. I’m not sure if the
intended software would only work on sebas, but perhaps you get an idea of
how to name your project.

If you don’t want to use GitHub, there are other options such us Bitbucket
and often local options at your university. There should really be no excuse
to not using a code repository.

Subsection 1.1.4: Setting up your programming environment

Once you have created your repository for this project, it’s time to fill it with
the first files. A common layout is to have a directory called src within the
project. The src directory will hold all your source code files. Let’s conform
with this standard and create the directory.

But before we go into writing your first program, we need to set-up your
programming environment. Source code is always written in plain text files.
That means, you can work on the source code using any text editor, for exam-
ple - NotePad++ - Atom - Sublime - Textpad There are also more specialized
programs for software development. These are usually called Integrative De-
velopment Environments (IDE). Examples of these are - XCode for Mac OS
- Microsoft Visual Studio for Windows - Eclipse for all operating systems -
Emacs If you have one of these programs installed, or want to install them,
it might be worth to learn how to use it. The major advantage is that they
include a compiler and make building your software much easier. They also
include a debugger which comes in very handy when you are testing your
code. Finally, most IDEs provide syntax highlighting and code completion
and other nice features that can help you develop your software. Since there
are several different IDEs available and each has their own ways of doing
things, I will not go into their specific details here.

On Linux or Mac OS, make sure that you have the c++ compiler gcc in-
stalled. On Mac OS, you will get gcc if you install and run XCode, or install
the Command Line Tools. Most Linux distributions have gcc automatically
installed.

To compile BabyBayes in Windows is not so straightforward. You can use

5

https://bitbucket.org

Microsoft Visual Studio, which is a powerful IDE for Windows. Alterna-
tively, you can compile BabyBayes using MinGW. You need to download the
installer “mingw-get-setup.exe” and install it. Then open “MinGW Instal-
lation Manager” you just installed. Click the square before “mingw32-base”
under “Basic Setup” and choose “Mark for Installation”, then choose “Apply
Changes” from the “Installation” menu. Additionally, add “C:\MinGW\bin”
(path to your MinGW installation) to your system path in setting “Environ-
ment Variables”.

Please take your time now and make sure you have all the software needed.

Section 1.2: Your first computer program

Subsection 1.2.1: The “Hello World!” program

Now we will write our very first computer program. As is tradition, we will
write a very simple Hello World program. Almost every programming book
starts with this exercise, so I’ll do the same.

Open a new text file and call it main.cpp. The extension .cpp is chosen by
convention so that everyone sees this is a c++ source code file. Write the
following few lines into the file and save it.

#include <iostream>

int main (int argc, char* argv[]) {

std::cout << "Hello World!\n";

return 0;
}

This is all you need to do for your very first program. I’ll explain each line
below but I know that you cannot wait to actually run this amazing program.
So we need to compile the program before you can run it.

6

http://www.mingw.org/

Subsection 1.2.2: Writing a Makefile to compile your code

If you are using an IDE, you might be able to click a button to compile and
run the code. That would work. However, many programs, especially the
ones that should run on a computer cluster or are distributed, are compiled
using a Makefile. A Makefile is script that is run by the program called make.
There are very many different ways to set up your Makefile. Here I’ll just
provide one way of how to do this, but you can find much more information
on the web.

Create a new file called Makefile. This file should have no extension and
should really be called only Makefile. As before, the file should be in your
src directory. Now write the following content into the file.

CC = g++
CPPFLAGS = -O3

SRC = main.cpp
OBJECTS = main.o
PROGS = BabyBayes

all: $(PROGS)

BabyBayes: $(OBJECTS)
$(CC) $(CPPFLAGS) -o $@ $^

clean:
rm -f *.o *~ $(PROGS)

The first two lines specify some variables used for compiling. The g++ option
means that we will use the gcc compiler and specifically it’s c++ version. If
you want to use a different compiler, then please change it to the name of
your c++ compiler.

The second option, the -O3, specifies that the code will be compiled accord-
ing to the third level optimization. This is the fastest and most efficient
optimization. As a beginner, you should not worry about this and just keep
it as is.

The next three lines specify your source code (main.cpp), the name of the

7

translated file (by convention, you replace the .cpp with .o for each file), and
the name of your program (BabyBayes). When you will execute this file,
it will by default start with the all section. In our all section, we define
that we should perform the commands specified in the $(PORGS) section.
Remember that we just defined PROGS to be BabyBayes, so this means
that we will perform the commands in the BabyBayes section. This very
cryptic line in the BabyBayes section performs the actual compilation. If
you wanted to compile your Hello World program without a Makefile, you
could have used

g++ -o MyProgram main.cpp

However, instead of writing this line every time you are compiling your soft-
ware, it is easier to store the command in the Makefile. It is also easier to
tell someone else to simply run make instead of providing a horribly long and
complex compilation command. For example, imagine that a software like
RevBayes has more than a thousand files, so the list of source files and inputs
to g++ becomes very, very large. Also, the order of the files is important, as
you will learn later.

Subsection 1.2.3: Explaining the Hello World program

In our little Hello World program, we started with the line

#include <iostream>

So what does this #include do? The #include directive tells the compiler
to load other files or libraries. By convention, we use for loading libraries
and <another_file.h> for loading other source files. So in this case, we load
the iostream library that belongs to the c++ standard. As you might have
guessed, the iostream library defines the input/output functions.

The next text line in our program was

int main (int argc, char* argv[]) {

This line simple specifies that now the main function begins. First, it says
that the return value of the function is of type int. Then, it says that the
name of the function is main. Next, it says that there are two arguments,
the first is called argc and is of type int. The second argument is called argv,

8

the values of the arguments, and is of type int*[]. This is quite a lot for the
beginning, and will be explained more later and hopefully make sense then.
Don’t worry too much about these details yet.

You might have noticed the curly brace { at the end of the line. By definition,
a function, such as the main function, is followed by a command. However,
you often want to perform more than one command within a function. The
solution is to write a block of commands. A block is always surround by an
opening and closing pair of curly braces { and }.

The next command it the only actual command of our program.

std::cout << "Hello World!\n";

The std::cout says that we use the standard output, i.e., the terminal output,
to print something. The prefix std specifies that cout lives in the namespace
std. You will come across many functions from the std namespace over the
next weeks.

The right hand part of the command says that the text, which is called
string in computer science jargon, is printed. Note that the direction of the
<< signals the direction; the text goes into the standard output cout.

Finally, we finish our program by return the number 0 and closing the com-
mand block with the closing curly brace }. By convention, if the program
returns a 0, then the program quit successful. Otherwise, you can return
different numbers to signal different errors during execution.

return 0;
}

Subsection 1.2.4: Modifying the Hello World program

As a little exercise, and preparation for our BabyBayes software, let’s change
the Hello World text to print the information of your program. Change the
commands to something like the following code.

std::cout << "BabyBayes v1.0\n";
std::cout << "Sebastian Höhna\n";

9

std::cout << "Ludwig-Maximilians-Universität München\n";
std::cout << "\n\n";

Now compile and run this new code. It still might look lame and boring, but
getting this first step working is very crucial. If you succeeded, give yourself
a little applause and a cup of coffee or tee; you’ve deserved it!

Subsection 1.2.5: The main function

The main function is the most important in every compiled software. The
software always starts with the main function, and in programming languages
you like c, c++ and Java you always must have exactly one main function
in your software.

This convention is very important for software development. When you exe-
cute a software, it will always start at the main function. How else would the
software know where to start? Hence, when you execute a software, you are
in fact only executing the main function of that software. What is happening
inside the main function depends on the specific software and can be quite
complex, most often including execution of other functions.

Subsection 1.2.6 :Functions take arguments and return values

Earlier, I mentioned that main is a function and that the general pattern of
functions is:

<return type> <function name>(<input variable(s)>) {

}

Let’s delve more deeply into what the main function is taking in as arguments
and what it is returning.

The main function takes as arguments two variables, int argc and char*
argv[]. Where do these arguments come from? In this case, argc and argv are
supplied by the operating system when the program is executed. int argc is a
variable called ‘argc’ which can hold an integer value. The other variable that
is provided by the operating system, ‘char* argv[],’ is a bit more mysterious.
This is an array of pointers to strings. I realize that probably made no sense,

10

but here is another try: char* argv[] is a vector of memory addresses, each
of which indicates the starting address for a string. (Don’t worry if this still
doesn’t make sense.)

What is contained in int argc and char* argv[]? int argc holds the number of
strings (i.e., words) contained in argv. Create a new file called main2.cpp
as a copy of your first main.cpp. Rewrite your main function to look like
this:

int main(int argc, char* argv[]) {

std::cout << "argc = " << argc << std::endl;
for (int i=0; i<argc; i++) {

std::cout << "argv[" << i << "] = " << argv[i] << std::endl;
}

return 0;
}

Now, compile the program using

g++ -o MyProgram main.cpp

and run it with

./MyProgram2

When I run the above program, I get the following output:

argc = 1
argv[0] = ./MyProgram2

The operating system is passing to the program, through the main function,
information on how the program was called. In this case, there is one argu-
ment and that argument is the path to the executable.

Now, let’s have some fun. I am going to type the following the next time I
execute the program,

./MyProgram2 David Swofford had a little lamb which was named, sensibly enough, PAUP

This line produces the following output on my computer:

argc = 13

11

argv[0] = ./MyProgram2
argv[1] = David
argv[2] = Swofford
argv[3] = had
argv[4] = a
argv[5] = little
argv[6] = lamb
argv[7] = which
argv[8] = was
argv[9] = named,
argv[10] = sensibly
argv[11] = enough,
argv[12] = PAUP

Note that the operating system broke up the sentence by words, separated
by blank space(s). Again, the first string that is passed to the main function
is the path to the executable name. The other strings, however, are the
individual words that followed the executable name.

You may have had experience with programs that run from the command
line. Genomics analysis often involves the use of many command-line pro-
grams, perhaps stitched together using a language such as python. For ex-
ample, ClustalW is a widely-used program that aligns nucleotide or amino
acid sequences. The user manual gives the following example of how to call
ClustalW from the command line:

clustalw2 -infile=my_data -type=protein -matrix=pam -outfile=my_aln -outorder=input

Note that the word clustalw2 is the executable name. Simply typing this
word executes the program. All of the words after clustalw2, however, are
arguments that are passed into Clustal’s main function. The programmers
for Clustal read the number of arguments (argc) and the strings argv to set
the program’s state. Command line arguments passed into main using int
argc and char* argv[] are a convenient, if not particularly user-friendly, way
to specify things such as input and output files, etc.

This concludes our discussion of the ‘Hello World’ program. Who would
have thought that such a simple program would provide so much fodder for
discussion?

12

Section 1.3: Variables

Subsection 1.3.1 The basic variable types

Copy the main.cpp file and modify the main function so that it reads:

int main(int argc, char* argv[]) {

int x = 3;
std::cout << "x = " << x << std::endl;

return 0;
}

This simple program declares a variable named ‘x’ and initializes its value to
x = 3. This all occurs on one line, int x = 3. The next line prints the value
of x. The output of the program should look like:

x = 3

The single line in which we declared and initialized the variable x could have
been done in two lines, instead:

int x; // declare variable called x
x = 3; // set the value of the variable x to 3

Most programmers, when declaring a variable, will also initialize it to some
value. Normally, if I were declaring a variable like x, I would initialize its
value to zero, int x = 0, so that I could rely on it being zero. Some compilers,
when you declare a variable without initializing it (e.g., int x), initialize the
value to zero. Other compilers, however, do not do this and the value of the
variable will reflect the pattern of bits that happen to be at that memory
address. Declaring and initializing the variable ensures that it has a value
that you can rely on. Note that I added comments to the two lines, above;
the words after the // are the comment and are not read by the compiler.

In c++, when you declare a variable, you also indicate the variable type.
Here, we are declaring the variable x to be of type int. In c++, and other
languages too, int declares a variable that can hold integers. (Remember,
integers are the numbers …, -3, -2, -1, 0, 1, 2, 3, …)

13

What if you wanted to store and manipulate a real-valued number in com-
puter memory? You can do this with the float or double variable types.
Modify the main program, again, to read:

int main(int argc, char* argv[]) {

int x = 3;
std::cout << "x = " << x << std::endl;
double y = 3.14;
std::cout << "y = " << y << std::endl;

return 0;
}

When I run this program, I get the following output:

x = 3
y = 3.14

The other standard variable types are summarized in the following table:

Variable Type Example
int Integers -1, -100, 0, 314, 10001
unsigned int Natural Numbers 0, 1, 2, …
float Real Numbers -4.23, 10.01e+4, 10203.0001
double Real Numbers Same as with floats
char Characters c, a, B, Z
bool Boolean true, false

There are a few other variable types that you might come across, but the
table summarizes the main ones you will likely ever use.

Subsection 1.3.2: Variables take up space

When you declare a variable, such as int x = 0, the operating system sets
aside enough space on your computer’s memory to represent the variable.
Interestingly, c++ allows you to see how much space is set aside and even
where the variable resides in memory. Now let’s rewrite main to read:

14

int main(int argc, char* argv[]) {

int x = 0;
std::cout << "x's value = " << x << std::endl;
std::cout << "x's address = " << &x << std::endl;
std::cout << "x's size = " << sizeof(int) << std::endl;

return 0;
}

When I run this program, I get the following output:

x's value = 0
x's address = 0x7ffeefbff57c
x's size = 4

The first line of code, int x = 0, simply declares and initializes an integer
variable called x. The next line of code should also make sense to you; it
simply prints out the value of x, which because you initialized the variable
at the same time that you declared it, is predictably zero. It’s on the next
line of code which prints out the memory address of x, std::cout << “x’s
address =” << &x << std::endl, where things get interesting. You can get
the memory address of a variable by putting the ampersand symbol, ‘&,’ in
front of the variable’s name. So, &x represents the memory address of the
variable x. You can see that when I ran the program on my computer, the
memory address is reported to be 0x7ffeefbff57c.

The memory address deserves explanation. First of all, the memory on your
computer is arrayed in bytes, each of which has an address. To understand
this a bit more, imagine a city that consists only of a single street. Every
house in the street gets a house number (i.e., an address) which are nice
and tidy in an increasing order. You can then address the inhabitants of the
city by their address (the house number). This is exactly the way how the
memory in your computer is order and addressed by computer programs.

The last line of the modified program prints the size of the variable, x. You
can see that an integer takes up four bytes on my computer. In fact, the first
byte will reside at the address that was printed out (0x7ffeefbff57c). The
next three bytes will be adjacent to the first, at the locations 0x7ffeefbff57d,
0x7ffeefbff57e, and 0x7ffeefbff57f.

15

Of course, the memory address of a variable can change each time the pro-
gram is run. The amount of space that is set aside for each variable type,
however, is constant. On my computer, the standard variable types take up
the following amount of space:

Variable Number Bytes
int 4
unsigned int 4
float 4
double 8
char 1
bool 1

Subsection 1.3.3: Variables in computers have limits

We now know that when we declare a variable to be of type int, that the
compiler sets aside four bytes of space somewhere on your memory card.
What is the largest and smallest value that can be stored in computer memory
as an int?

Each byte of memory consists of eight ‘bits,’ each of which has two states,
on (1) or off (0). The binary representation of the first ten positive integers
is

Number Binary Representation
0 00000000000000000000000000000000
1 00000000000000000000000000000001
2 00000000000000000000000000000010
3 00000000000000000000000000000011
4 00000000000000000000000000000100
5 00000000000000000000000000000101
6 00000000000000000000000000000110
7 00000000000000000000000000000111
8 00000000000000000000000000001000
9 00000000000000000000000000001001
10 00000000000000000000000000001010

16

Note that most of the bits, the leading ones, are not being used for our int
variable. In fact, if we knew that the largest number we wanted to hold
was 10, we could get away with one byte (8 bits), and still have four bits
to spare. There is a variable type called ‘short int’ which only takes up two
bytes of memory. In this case, in which we know that the maximum size
of the integer we want to hold is 10 (in base-10), we could use a short int
instead, thereby saving two bytes of memory. If we were programming in the
1970s, we might go ahead and do just this. In the 1970s, a good computer
had only thousands of bytes of memory. Today, we have billions of bytes
of memory to play with. Most programmers do not worry about saving a
few bytes. Rather, they worry more about places in the code that a lot of
memory is allocated (where a lot of memory might be millions of bytes, or
megabytes, are allocated).

Imagine we had only two digits to represent a base-10 number. What is
the largest value that can be represented with two digits? The answer: 99
(or 102 − 1). Similarly, the largest binary number that can be represented
with 32 bits is 11111111111111111111111111111111, or 232 − 1. For the
int variable type, however, one of the 32 bits is used to indicate whether
the number is positive or negative. Therefore, the largest value that can be
stored using an int variable is 1031 − 1 = 2147483647 whereas the smallest
value is −2147483648. The actual story is a bit more complicated than I just
made out, but you see the point: if we wanted to store a number larger than
about 2.1 billion, we are going to run into problems. In fact, if we attempt
to do so, we will get an overflow error from the computer. (The opposite
problem — attempting to hold the value of a number that is too small — is
called an ‘underflow error.’)

Note that you can get information on the limits of numerical representation
from functions defined in the limits include file.

Similarly, we cannot represent the real numbers with complete accuracy. Try
the following experiment; rewrite your project code so that it reads:

#include <iomanip>
#include <iostream>

int main(int argc, char* argv[]) {

float x = 0.1;

17

double y = 0.1;

std::cout << std::fixed << std::setprecision(50) << "x = " << x << std::endl;
std::cout << std::fixed << std::setprecision(50) << "y = " << y << std::endl;

return 0;
}

The output should look like this:

x = 0.10000000149011611938476562500000000000000000000000
y = 0.10000000000000000555111512312578270211815834045410

Neither number is exactly equal to 0.1, though both are quite close to that
value. The reason is straight-forward: computers cannot represent every
real number with complete precision, but rather approximates any particular
number as well as it can. The representation of 0.1 is better when we use a
double variable than when we use the float type. This makes sense because
the internal representation of the real number for the double type uses twice
as many bytes as the float type.

You should always be concerned about numerical accuracy when doing com-
putations in evolutionary biology. Some of the more obscure output from
many programs, such as reporting the log of a probability, are done to avoid
underflow.

Subsection 1.3.4: You can use a variable to hold a memory address

As I pointed out earlier, we can get the memory address of a variable by
putting an ampersand in front of the variable in computer code. This seems
to be a neat trick, but otherwise useless. After all, why should we care about
the location of the variable in memory? This is especially true because we,
as the programmer, do not even control where the variable is to reside.

It turns out that knowing the memory address is quite important. If we
know where a variable resides in memory, we can manipulate that variable.
Moreover, other parts of your code, such as the functions you code, also
have a memory address when the program is executed. If we know where a
function resides in computer memory, we can also manipulate it.

18

What if we want to remember the memory address of a variable? We can
make another variable that will hold the memory address. Such a variable is
called a ‘pointer’ in the computer science lingo. Rewrite your little program
so that the main function now reads:

#include <iostream>

int main(int argc, char* argv[]) {

int x = 0;
int* xPtr = &x;

std::cout << "x = " << x << std::endl;
std::cout << "&x = " << &x << std::endl;
std::cout << "xPtr = " << xPtr << std::endl;
std::cout << "&xPtr = " << &xPtr << std::endl;
std::cout << "int size = " << sizeof(int) << std::endl;
std::cout << "int* size = " << sizeof(int*) << std::endl;

return 0;
}

When I run this program on my computer, I get the following output:

x = 0
&x = 0x7ffeefbff56c
xPtr = 0x7ffeefbff56c
&xPtr = 0x7ffeefbff560
int size = 4
int* size = 8

We declare and initialize two variables in the code. The first should look
familiar to you by now. We simply declare a variable called x to be of type
int and set its value to zero (int x = 0). The second line is new. Here,
we declare a pointer variable of type int*. The asterisk indicates that the
variable is a pointer. In fact, it is a variable that can hold the memory
address of an int. We also initialize the pointer variable to be equal to the
memory address of x.

Confusingly, different programmers will put the asterisk, which indicates that

19

the variable will hold a memory address, in different places. Compilers will
accept the following as equivalent:

int* xPtr = &x;
int * xPtr = &x;
int *xPtr = &x;

It seems the asterisk can attach itself to the variable type (here int), to the
variable name, or even stay in between the two like a baseball player caught
in a pickle. I follow the convention of having the asterisk cling to the variable
type.

Two of the lines display the same memory address:

&x = 0x7ffeefbff56c
xPtr = 0x7ffeefbff56c

This makes perfect sense because we set the value of int* to be the memory
address of x. The next line simply shows that the variable named xPtr also
has a memory address. After all, it is a variable! You will note that the
pointer variable takes up eight bytes of memory.

What if, for some reason, we wanted to remember the memory address of the
variable xPtr? We could do this by declaring another variable to hold the
memory address. The big question here is what would the variable type be?
Clearly it is a pointer, but it is a pointer to a variable that is itself a pointer.
The answer is to append another asterisk to the variable type, resulting in:

int** anotherDamnPointer = &xPtr;

The variable, anotherDamnPointer, can also hold a memory address, but
only for variables of type int*. You should feel confident enough to modify
the program to see that a variable of type int** also takes up eight bytes of
memory. All pointer variables take up the same amount of memory (four or
eight bytes, depending on the computer) regardless of the type of variable it
holds the memory address of.

Subsection 1.3.5: Dereferencing pointers

I mentioned that if you know the address of a variable, that you can manip-
ulate it. You can do this by ‘dereferencing’ the pointer. Here’s an example

20

using a re-written main function:

#include <iostream>

int main(int argc, char* argv[]) {

int x = 0;
int* xPtr = &x;
std::cout << "x = " << x << std::endl;

*xPtr = 3;
std::cout << "x = " << x << std::endl;

return 0;
}

When I run this program, I get the following output:

x = 0
x = 3

Note that I didn’t change the value of x directly by simply typing x = 3.
Rather, I changed its value indirectly using *xPtr = 3. Essentially, the
program changes the value at the memory address stored in the pointer
variable, xPtr.

21

	Chapter 1: Introduction
	Section 1.1: Getting Started with Writing a Software
	Subsection 1.1.1: The academic software lifecycle
	Subsection 1.1.2: Choosing a programming language
	Subsection 1.1.3: Setting up a code repository
	Subsection 1.1.4: Setting up your programming environment

	Section 1.2: Your first computer program
	Subsection 1.2.1: The ``Hello World!'' program
	Subsection 1.2.2: Writing a Makefile to compile your code
	Subsection 1.2.3: Explaining the Hello World program
	Subsection 1.2.4: Modifying the Hello World program
	Subsection 1.2.5: The main function
	Subsection 1.2.6 :Functions take arguments and return values

	Section 1.3: Variables
	Subsection 1.3.1 The basic variable types
	Subsection 1.3.2: Variables take up space
	Subsection 1.3.3: Variables in computers have limits
	Subsection 1.3.4: You can use a variable to hold a memory address
	Subsection 1.3.5: Dereferencing pointers

